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Abstract 

In this 501 project, we present the results of the paper “A Short Proof for a Generalization of 

Vizing’s Theorem” by J.C. Fournier and C. Berge.  Recall that Vizing’s Theorem is the standard for 

showing that the chromatic index of a graph falls into one of two classes.  In particular, for any 

simple graph 𝐺, Δ(𝐺) ≤ 𝜒 (𝐺) ≤ Δ(𝐺) + 1.  For multigraphs, Vizing and Gupta showed that an 

upper bound of the chromatic index is Δ + 𝜇, where 𝜇 is the maximum multiplicity of any vertex in 

the multigraph.  The main result presented here will show that it is possible to achieve a tighter 

upper bound by properly coloring the edges of a graph with just Δ + 𝜇 − 1 colors.   In this paper we 

will illustrate the proof for this result, give some examples, and present some interesting 

corollaries.  
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Generalizing Vizing’s Theorem to Multigraphs 

 

Introduction 

In this 501 project, we present the results of the paper “A Short Proof for a Generalization of 

Vizing’s Theorem” by J.C. Fournier and C. Berge. [1]  Recall that Vizing’s Theorem is the standard for 

showing that the chromatic index of a graph falls into one of two classes.  In particular, for any 

simple graph 𝐺, 

 Δ(𝐺) ≤ 𝜒 (𝐺) ≤ Δ(𝐺) + 1. 

For multigraphs, Vizing and Gupta showed that an upper bound of the chromatic index is Δ + 𝜇, 

where 𝜇 is the maximum multiplicity of any vertex in the multigraph.  The main result presented 

here will show that it is possible to achieve a tighter upper bound by properly coloring the edges of 

a graph with just Δ + 𝜇 − 1 colors.   In this paper we will illustrate the proof for this result, give 

some examples, and present some interesting corollaries.  

 Graph coloring is a subject with roots in the problems encountered by map-makers in the 

1800’s, but with many modern applications, from real-world scheduling and compiler optimization 

to sensor network design and fiber-optic communication.  Let 𝐺 be a graph with vertex set 𝑉 and 

edge set 𝐸.  Any edge-coloring of 𝐺 is simply any assignment of colors to the edges of 𝐺.  We say 

such an edge-coloring is proper when no two incident edges share the same color.  With an 

unlimited number of colors, any graph can be properly edge colored.  Of more interest is the 

minimum number of colors required to properly color the edges of a graph.  We call this number 

the chromatic index of 𝐺, denoted 𝜒′(𝐺).  In this paper we focus on a sharp upper bound for the 

chromatic index of multigraphs (graphs allowing multiple edges between vertices).   We also 

present a some corollaries of this result.   
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 Vadim G. Vizing (1937 – 2017) was the first to state an important bound on the chromatic 

index of a simple graph (a graph without multiple edges).  His theorem, appropriately known as 

Vizing’s Theorem [2], was published in 1964 and says that if 𝐺 is a simple graph, then  

         𝜒 (𝐺) ≤ Δ(𝐺) + 1.       (1) 

Given that any proper edge-coloring must have at least the number of colors as the maximum 

degree of a vertex, we have fairly tight lower and upper bounds for such edge colorings:  

Δ(𝐺) ≤ 𝜒 (𝐺) ≤ Δ(𝐺) + 1.      (2) 

Building on this result for the case of multigraphs, Vizing and Gupta [3] showed that for a loopless 

multigraph  

   𝜒 (𝐺) ≤ Δ(𝐺) + 𝜇(𝐺)      (3) 

where Δ(𝐺) is the maximum degree of a graph 𝐺 and 𝜇(𝐺) is the maximum multiplicity.  For an 

example of a graph that reaches the maximum value, consider the multigraph shown below. 

 

𝜒 (𝐺) = Δ(𝐺) + 𝜇(𝐺) = 8 + 4 = 12. 

 A few years later, in 1978, Jean Claude Fournier [4] showed that if the set of vertices with 

maximum degree were independent, then  

𝜒 (𝐺) = Δ(𝐺).      (4) 
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Adapting this theorem to multigraphs as Vizing and Gupta had done previously, Fournier and Berge 

in 1991 presented a short, but dense proof that such graphs can be properly edge colored with 

Δ(𝐺) + 𝜇(𝐺) − 1 colors [1], so that 

𝜒 (𝐺) ≤ Δ(𝐺) + 𝜇(𝐺) − 1.     (5) 

This result improves on Vizing’s and Gupta’s conclusion, but it requires additional assumptions.  

Both methods rely on a method of “downshifting” colors from one edge to another as a key step in 

an induction argument.  For Vizing, the configuration studied for this method was referred to as a 

“Vizing fan,” while Fournier and Berge’s adaptation of the Vizing fan coins the term “sequential 𝑓-

recoloring.”  The main proof of this paper will illustrate the method in detail.   

 

Main Result 

Before presenting the main result, we briefly review a bit of notation.  Much of this is 

standard and can be found in “Introduction to Graph Theory” by Douglas B. West [5]. 

𝐺: a loopless multi-graph 

Δ(𝐺):  the maximum degree of the graph (the maximum number of edges incident with any one 
vertex) 

𝐷:  any upper bound for Δ(G) (useful since Δ(G) changes as we add/remove edges to the graph) 

𝜇(𝐺):  the maximum multiplicity of a graph (the most parallel edges between any two vertices) 

𝑡:  any upper bound for 𝜇(𝐺) (useful since 𝜇(𝐺) changes as we add/remove edges to the graph) 

𝑑 (𝑥):  the degree of any vertex 𝑥 

𝑚 (𝑥, 𝑦):  the number of edges between any two vertices 𝑥 and 𝑦 

𝑚 (𝑥) = max 𝑚 (𝑥, 𝑦):  the maximum multiplicity between 𝑥 and any adjacent vertex. 

𝐶 : the set of colors for the edges incident to a vertex 𝑦 (relative to an edge coloring) 

𝜒 (𝐺):  the chromatic index of 𝐺 (the min number of colors needed to properly edge color 𝐺) 

 

We now state the main result of Fournier and Berge. 



6 
 

 
 

 

Theorem [1]:  Fix any positive integers 𝐷, 𝑡.  Suppose 𝐺 is a non-empty loopless multigraph with 

maximum degree Δ(𝐺) ≤ 𝐷 and multiplicity 𝜇(𝐺) ≤ 𝑡.  Let 𝑆 be the following set: 

𝑆 = {𝑥|𝑥 ∈ 𝑉(𝐺); 𝑑 (𝑥) = 𝐷; 𝑚 (𝑥) = 𝑡}. 

If this set is independent or empty, then 𝜒 (𝐺) ≤ 𝐷 + 𝑡 − 1. 

 

Before we prove this result, let’s begin by unpacking what the theorem is saying.  In the 

hypothesis, Fournier and Berge require that if there is a non-empty set of vertices which all have 

maximum degree 𝐷 and maximum multiplicity 𝑡, then they must form an independent set for the 

result to hold.   However, the result still holds if there are no vertices which have both maximum 

degree 𝐷 and maximum multiplicity 𝑡.   We will look at each of these cases separately.  Note that if 

𝐷 = Δ + 1 and 𝑡 = 1, then the set is empty by construction.  In this case, 𝐷 + 𝑡 − 1 = Δ + 1, and we 

have Vizing’s theorem (cf. [2]) for simple graphs.  Also, when 𝐷 = Δ and 𝑡 = 1, the set is non-empty 

by construction and we obtain Fournier’s result (cf. [4]) for simple graphs.   

 

Proof of Main Result 

The proof proceeds by induction on the number of edges in the graph.  After establishing a 

base case and making a hypothesis that the theorem holds for all graphs with fewer edges than 𝐺, 

we show that it holds for 𝐺 as well.   

 

Base Case:  Let 𝐺 be a graph with one edge.  Then 𝐷 ≥ 1, 𝑡 ≥ 1, and  

𝐷 + 𝑡 − 1 ≥ 1.  Clearly, a proper-edge coloring with one color exists for such a graph. 
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Induction Step:  Let 𝐺 be a non-empty graph with any number of edges ≥ 2.  For any edge  

𝑒 of 𝐺, assume the theorem holds for 𝐺 − 𝑒, the graph with 𝑒 deleted.  Note that Δ(𝐺 − 𝑒) ≤ Δ(𝐺) 

and 𝜇(𝐺 − 𝑒) ≤ 𝜇(𝐺) so that 𝜒 (𝐺 − 𝑒) ≤ 𝐷 + 𝑡 − 1.  We want to show that   

𝜒 (𝐺) ≤ 𝐷 + 𝑡 − 1. 

We prove that this holds whenever the set 𝑆 is independent or empty.   

 

Case 1:  𝑺 ≠ ∅   

If 𝑆 is not empty, then there exists a vertex 𝑥 ∈ 𝑆, 𝑑 (𝑥 ) = 𝐷, and 𝑚 (𝑥 ) = 𝑡.  Let 

𝑦  be any vertex adjacent to 𝑥  for which 𝑚 (𝑥 , 𝑦 ) = 𝑚 (𝑥 ).  Since the set 𝑆 is 

independent, we know that 𝑑 (𝑦 ) < 𝑑 (𝑥 ).  Let 𝑒  be any edge between 𝑥 , 𝑦 .  Color the 

graph 𝐺 − 𝑒  with 𝐷 + 𝑡 − 1 colors, as guaranteed possible by the induction hypothesis.  

Specifically, let 𝑔: {1, 2, ⋯ , 𝐷 + 𝑡 − 1} be a proper edge coloring of 𝐺 − 𝑒 .  Relative to this 

coloring, we use 𝐶  to denote the set of colors used on edges incident with a vertex 𝑦.  We 

will use the induced graph by the edges between 𝑥  and its neighbors, illustrated below, to 

demonstrate the steps in the proof as we move forward. 

 

𝜒 (𝐺 − 𝑒 ) ≤ 𝐷 + 𝑡 − 1 

We are going to define a sequence of edges that are incident to 𝑥  with the labels  

𝑒 = [𝑥 , 𝑦 ], 𝑒 = [𝑥 , 𝑦 ], ⋯ , 𝑒 = [𝑥 , 𝑦 ], where 𝑘 will be determined later.  For each 

𝑖 ≥ 1, let the color of each edge 𝑒  be 𝛼  in the proper edge coloring 𝑔 of 𝐺 − 𝑒 .  We will 

e0

x0

y0
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recursively define an auxiliary function 𝑓 that reserves a new color for each edge 𝑒  in our 

sequence.   In particular we will let 𝑓(𝑒 ) = 𝛼  where 𝛼  is one of the 𝐷 + 𝑡 − 1 original 

colors used in our sequence.  Note that we are not yet recoloring any of the edges, just 

building a sequence of edge-color pairs 𝑒 , 𝑓(𝑒 ) = (𝑒 , 𝛼 ) for 𝑖 = 0, 1, ⋯ , 𝑘 − 1 for some 

1 ≤ 𝑘 ≤ 𝐷, and this sequence will comply with the following process. 

A.  For the edge 𝑒 , choose any color 𝛼 = 𝑓(𝑒 ), such that 𝛼 ∉ 𝐶 .  Such a color must 

exist since  

𝐶 < Δ ≤ 𝐷 + 𝑡 − 1. 

 

 

 

 

For each 𝑖 ≥ 1, repeat B until C applies. 

B. If 𝛼 ∈ 𝐶  and if 𝛼 ≠ 𝑓(𝑒 ) for all 𝑗 < 𝑖 − 1, consider the edge 𝑒 = [𝑥 , 𝑦 ] that is 

colored with 𝛼 .  Choose any color 𝛼 = 𝑓(𝑒 ) to be the color reserved for the edge 𝑒  

as long as the following two conditions hold: 

1. 𝛼 ∉ 𝐶  (The new color is free at 𝑦 . ) 

2. 𝛼 ≠ 𝑓(𝑒 ) for all 𝑗 < 𝑖 where 𝑦 = 𝑦  (The new color has not already been 

reserved for a previous edge at the same vertex.) 

We know such a color 𝛼  exists since the total number of colors 𝑞 excluded by 1 and 2 

is at most 𝐶 + [𝑚 (𝑥 , 𝑦 ) − 1].  Since 𝑦 ~𝑥  and 𝑆 is independent, 𝑑 (𝑦 ) < 𝐷, so 

𝑞 < 𝐶 + 𝑚 (𝑥 , 𝑦 ) ≤ 𝑑 (𝑦 ) + 𝑚 (𝑥 , 𝑦 ) ≤ 𝐷 + 𝑡 − 1. 

 

𝑖 Edge 𝑔(𝑒 ) 𝑓(𝑒 ) 

0 𝑒 = [𝑥 , 𝑦 ] ----- 𝛼  
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C. If 𝛼 ∉ 𝐶 , or if 𝛼 = 𝑓(𝑒 ) for an index 𝑗 < 𝑘 − 1, we stop and we say our recoloring 

sequence of edges is achieved, and the corresponding auxiliary function 𝑓 is defined.  

 

 

 

 

 

 

 

 

Note that C eventually applies, since either 𝛼 = 𝑓(𝑒 ) for some 𝑗 < 𝑘 − 1 or else we 

eventually exhaust the edges at 𝑥 , in which case 𝛼 ∉ 𝐶 . 

 

We have achieved a list of distinct edges, 𝑒 , 𝑒 , ⋯ , 𝑒 ,  with potential colors reserved 

for each.  We now describe how we will eventually use this sequence to re-color 𝐺.  From 

our list of 𝐷 + 𝑡 − 1 assume 𝛾 represents any color not assigned to 𝐶 , and fix any edge 𝑒  

where 0 ≤ 𝑖 < 𝑘.  Suppose 𝛾 ∉ 𝐶  and 𝛾 ≠ 𝑓(𝑒 ) for any 𝑗 < 𝑖.  To sequentially 𝑓-recolor, 

beginning with (𝑒 , 𝛾) we assign this new color 𝛾 to 𝑒  and then  “downshift”, using our 

sequential list of 𝑓-recolorings to change the color of 𝑒  to 𝑓(𝑒 ), the color of 𝑒  to 

𝑓(𝑒 ), etc.  At the last step we arrive to our uncolored edge 𝑒  and allow 𝛼 = 𝑓(𝑒 ).  

Following this process produces a proper edge-coloring of 𝐺 by construction, without 

introducing any new colors.  Our choice of 𝛾 and 𝑒  will depend on how our process 

terminates.  Eventually, we will run into one of the following two scenarios at C. 

 

  

𝑖 Edge 𝑔(𝑒 ) 𝑓(𝑒 ) 

0 𝑒 = [𝑥 , 𝑦 ] ----- 𝛼  

1 𝑒 = [𝑥 , 𝑦 ] 𝛼  𝛼  

⋮ ⋮ ⋮ ⋮ 

𝑖 𝑒 = [𝑥 , 𝑦 ] 𝛼  𝛼  

⋮ ⋮ ⋮ ⋮ 

𝑘 − 1 𝑒 = [𝑥 , 𝑦 ] 𝛼  𝛼  
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Scenario 1:  𝛼 ∉ 𝐶  and 𝛼 ≠ 𝑓 𝑒  for 𝑗 < 𝑘 − 1 

In this scenario, the color, 𝛼 , chosen for recoloring 𝑒  is not incident to 𝑥  in the 

original coloring 𝑔.  By condition 1 in B, we know that 𝛼 ∉ 𝐶 .  Thus, we are free to apply 

the sequential 𝑓-recoloring beginning with (𝑒 , 𝛼 ) and a valid edge coloring of 𝐺 is 

achieved without introducing any new colors. 

 

 

 

 

 

 

 

 

 

 

Original coloring of 𝐺 − 𝑒 : 

  

𝑖 Edge 𝑔(𝑒 ) 𝑓(𝑒 ) 

0 𝑒 = [𝑥 , 𝑦 ] ----- 𝛼 = 𝑜𝑟𝑎𝑛𝑔𝑒 

1 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑜𝑟𝑎𝑛𝑔𝑒 𝛼 = 𝑟𝑒𝑑 

2 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑟𝑒𝑑 𝛼 = 𝑙𝑡 𝑔𝑟𝑒𝑒𝑛 

3 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑙𝑡 𝑔𝑟𝑒𝑒𝑛 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 

4 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 𝛼 = 𝑏𝑙𝑢𝑒 

5 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑏𝑙𝑢𝑒 𝛼 = 𝑝𝑖𝑛𝑘 

6 𝑒 = 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑝𝑖𝑛𝑘 𝛼 = 𝑦𝑒𝑙𝑙𝑜𝑤 

e0

e1

ek-1

αk free

y0y1

yk-1 x0
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After sequential 𝑓-recoloring: 

 

 

 

Scenario 2:  𝛼 = 𝑓 𝑒 = 𝛼  for some 𝑗 < 𝑘 − 1 

In this scenario, the color 𝛼  is a color originally assigned to the edge 𝑒 = 𝑥 , 𝑦  

and reserved for the edge 𝑒 = 𝑥 , 𝑦 .  We note that 𝑦 ≠ 𝑦  by the second 

condition in step B.  Consider a color 𝛽 ∉ 𝐶 .  We know such a color must exist since 

𝐶 < 𝑑 (𝑥 ) ≤ Δ ≤ 𝐷 + 𝑡 − 1. 

We want to consider the maximal bicolor chain of edges which we label 〈𝑦 , 𝑧〉 where 

𝑦  is the vertex at one endpoint of the chain and 𝑧 is the vertex at the other endpoint of 

the chain.   The two colors of the chain will be alternately 𝛽 and 𝛼 .  Note that the first edge 

on this chain must be colored with 𝛽 since 𝛼 ∉ 𝐶 .  There are three possibilities for 𝑧 

that interest us.  The first is when 𝑧 = 𝑥 .  This can happen only when the chain passes 

through 𝑦  and includes the edge 𝑒 = 𝑥 , 𝑦  since it has the color 𝛼 = 𝛼 .  The second 

situation is when 𝑧 = 𝑦 .  In this instance 𝛼 ∉ 𝐶  and the color chain would end with 

the color 𝛽 at this vertex.  The final case of interest is when 𝑧 ≠ 𝑥  and 𝑧 ≠ 𝑦 .  Let 𝑔′ be a 

new edge coloring of 𝐺 − 𝑒  that swaps the colors of 𝛽 and 𝛼  in the chain 〈𝑦 , 𝑧〉.  For any 

e0e2
e4e1

e5

e3

ek-1
x0yk-1

y1
y0
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vertex 𝑦, let 𝐶  denote the set of colors used on edges incident with 𝑦.  Consider how this 

new coloring affects the sequential 𝑓-recoloring for each possibility listed above. 

Scenario 2a:   𝑧 = 𝑥    

With the new coloring 𝛼 ∉ 𝐶  and the color of the edge 𝑒 = 𝑥 , 𝑦  is changed to 

𝛽.  With the original coloring we had that 𝛼 ∉ 𝐶  and still do.  Then we are able to 

perform the sequentially 𝑓-recoloring beginning at 𝑒 , 𝛼 .  This produces a valid edge 

coloring of 𝐺 without introducing any new colors. 

 

Original coloring of 𝐺 − 𝑒 : 

 

Re-coloring of 〈𝑦 , 𝑧〉 chain: 

e0

e1

ej

ek-1

αk=αj

αk=αj

β

β

yj

αk free
x0yk-1

y1 y0

e0

e1

ej

ek-1β free

yj
β

β

αk=αj

αk=αj

y0y1

yk-1 x0
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After sequential 𝑓-recoloring: 

 

 

 Scenario 2b:  𝑧 = 𝑦    

With the new coloring we have that 𝛽 ∉ 𝐶′  and 𝛽′ ∉ 𝐶 .  This allows us to begin 

the sequential 𝑓-recoloring with 𝑒 , 𝛽 .  Again, we achieve a valid edge coloring of 𝐺 

without introducing any new colors. 

  

Original coloring of 𝐺 − 𝑒 : 

e0
e2

e4e1

ej = e5

e3

ek-1β free

yj

β

β

αk=αj

y0y1

yk-1 x0

e0

e1

ej

ek-1

αj free
yj-1

αk=αj

β

αk free

yj

β

β

αk=αj

αk=αj

y0y1

yk-1 x0
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 Re-coloring of 〈𝑦 , 𝑧〉 chain: 

  

After sequential 𝑓-recoloring: 

 

 

  

  

e0

e1

ej

ek-1

β free

αk=αj

αk=αj

αk=αj

β

β
yj

β free

αk=αj

yj-1

x0yk-1

y1 y0

e0

e2e4e1

ej

e3

ek-1

β

yj-1

αk=αj

β free

yj
β

β

αk=αj

αk=αj

y0y1

yk-1 x0
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Scenario 2c:  𝑧 ≠ 𝑥 , 𝑧 ≠ 𝑦  

In this case we look to the beginning of the 〈𝑦 , 𝑧〉.  chain.  With the new coloring 

we have that 𝛽 ∉ 𝐶′  and 𝛽 ∉ 𝐶′ .  This means we can assign the color 𝛽 to the edge 

𝑒 = [𝑥 , 𝑦 ] and the sequential 𝑓-recoloring beginning with (𝑒 , 𝛽) produces a valid 

edge coloring of 𝐺 without introducing any new colors. 

 Original coloring of 𝐺 − 𝑒 : 

 

 Re-coloring of 〈𝑦 , 𝑧〉 chain: 

  

e0

e1

ek-1

β

αk free

β

β

αk=αj

y0y1

yk-1 x0

z

e0

e1

ek-1

αk=αj

β free

β

β

αk=αj

y0y1

yk-1 x0

z
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After sequential 𝑓-recoloring 

 

Each case yields a proper edge-coloring of 𝐺 with 𝐷 + 𝑡 − 1 colors. 

 

Case 2:  𝑺 = ∅ 

If 𝑆 is empty, then there are no vertices which have both degree Δ and multiplicity 𝑡.  

In this case we choose any vertex 𝑥  of maximum degree such that 𝑑 (𝑥 ) = 𝐷.  Let 𝑦  be 

any vertex adjacent to 𝑥  for which 𝑚 (𝑥 , 𝑦 ) = 𝑚 (𝑥 ).  Let 𝑒  be any edge between 

𝑥 , 𝑦 .  Color 𝐺 − 𝑒  with 𝐷 + 𝑡 − 1 colors as guaranteed possible by the induction 

hypothesis.  Consider the same procedural steps we showed when 𝑆 ≠ ∅.  We only need to 

verify that we are still able to find a free color at each vertex for our sequential 𝑓-recoloring 

assignments.   Here is how we define 𝑓. 

A. Let 𝛼 = 𝑓(𝑒 ) such that 𝛼 ∉ 𝐶 .  Such a color exists since either 𝐷 > Δ, in which case  

𝐶 ≤ Δ < Δ < 𝐷 + 𝑡 − 1 

or 𝐷 = Δ and 𝑚 (𝑥 ) < 𝑡, in which case  

𝐶 ≤ Δ = Δ < 𝐷 + 𝑡 − 1, 

since 𝑡 ≥ 2.   

e0

e1

ek-1

αk=αj

β

β

β free

αk=αj

z

x0yk-1

y1 y0
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B. If 𝛼 ∈ 𝐶  and if 𝛼 ≠ 𝑓(𝑒 ) for all 𝑗 < 𝑖 − 1, consider the edge 𝑒 = [𝑥 , 𝑦 ] that is 

colored with 𝛼 .  Choose any color 𝛼 = 𝑓(𝑒 ) to be the color reserved for the edge 𝑒  

as long as the following two conditions hold: 

1. 𝛼 ∉ 𝐶  (The new color is free at 𝑦 . ) 

2. 𝛼 ≠ 𝑓(𝑒 ) for all 𝑗 < 𝑖 where 𝑦 = 𝑦  (The new color has not already been 

reserved for a previous edge at the same vertex.) 

Again, we know such a color 𝛼  exists since the total number of colors 𝑞 excluded by 1 

and 2 is at most 𝐶 + [𝑚 (𝑥 , 𝑦 ) − 1]. 

𝑞 < 𝐶 + 𝑚 (𝑥 , 𝑦 ) ≤ 𝑑 (𝑦 ) + 𝑚 (𝑥 , 𝑦 ) ≤ 𝐷 + 𝑡 − 1. 

C. If 𝛼 ∉ 𝐶 , or if 𝛼 = 𝑓(𝑒 ) for an index 𝑗 < 𝑘 − 1, we stop and our sequence of edges 

is achieved.   

So far, we can still guarantee that we are able to define 𝑓 for our given coloring of 𝐺 − 𝑒 .  

The last thing to check is whether there is a color 𝛽 available if 𝛼 = 𝛼  at some point for 

some 𝑗 < 𝑘 − 1.  We can verify this since either 𝐷 > Δ, in which case 

𝐶 = Δ < 𝐷 ≤ 𝐷 + 𝑡 − 1, 

or 𝐷 = Δ and 𝑚 (𝑥 ) < 𝑡, in which case 

𝐶 = Δ = 𝐷 < 𝐷 + 𝑡 − 1, 

since 𝑡 ≥ 2. 

 

Thus, when 𝑆 is empty, we are able to still execute a sequential 𝑓-recoloring so that  

𝜒 (𝐺) ≤ 𝐷 + 𝑡 − 1. 

           𝑄𝐸𝐷 
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Corollaries 

 In this section, we present some interesting consequences of the main result.  The first of 

these gives us a simpler hypothesis than the main theorem. 

 

Corollary 1:  Let 𝐺 be a multigraph of maximum degree Δ and of maximum multiplicity 𝜇.  If the set 

of vertices of maximum degree is independent, then Δ + 𝜇 − 1 colors suffice to color the edge-set of 

𝐺. 

Proof:  This follows immediately from the main theorem when we let 𝐷 = Δ and 𝑡 = 𝜇. 

           𝑄𝐸𝐷 

 

 The next corollary shows us that we can safely pre-color the edges of any maximal 

matching. 

 

Corollary 2:  Let 𝐺 be a multigraph of maximum degree Δ and of multiplicity 𝜇, and let 𝑀 be a 

maximal matching of 𝐺.  The edges of 𝐺 can be colored with Δ + 𝜇 colors so that all the edges in 𝑀 

get the same color.   

Proof:  Let 𝐺 − 𝑀 be the graph obtained by removing the edges of the maximal matching 𝑀.  Since 

𝑀 is a matching, when we remove them, we remove exactly one edge from each vertex incident to 

those edges.  Any vertices which were not incident the edges of 𝑀 are not adjacent to each other 

(else their shared edge would be part of 𝑀).  Thus, any remaining vertices of degree Δ form an 

independent set (or an empty set).  By the first corollary, we know that 𝜒 (𝐺 − 𝑀) ≤ Δ + 𝜇 − 1.  

Color all the edges of 𝑀 with one new color and we have that 𝜒 (𝐺) ≤ Δ + 𝜇.  

           𝑄𝐸𝐷 
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 Corollary 2 provides a nice algorithm for properly edge coloring a multigraph with Δ + 𝜇 

colors.  Begin by finding a maximal matching 𝑀 and assign all of those edges one color.  Color the 

remaining edges with Δ + 𝜇 − 1 colors.  If this proves difficult, we can find an edge 𝑒 ∈ 𝐺 − 𝑀 such 

that (𝐺 − 𝑀) − 𝑒  can be properly edge colored with Δ + 𝜇 − 1 colors and then perform the 

sequential 𝑓-recoloring outlined in the theorem. 

 A practical application for proper edge-colorings of a graph results from Corollary 2.  

Suppose that the maximal matching 𝑀 represents a pairing of pre-assigned matches on a given day 

or time slot between teams.  The graph represents all the pairings that need to happen for the 

season or event.  The chromatic index of this graph can show us how many more days or time slots 

would be required to achieve all pairings.   

 

 

Examples 

 

In this section we will look at an example matching Scenario 1, an example matching one of 

the possibilities in Scenario 2, and an example relating to Corollary 2.  In each example we will 

begin by choosing 𝑥 , 𝑦 , and 𝑒 , pre-coloring 𝐺 − 𝑒 , and listing Δ(𝐺), 𝜇(𝐺), and the number of 

colors defined by our upper bound of Δ + 𝜇 − 1.  After that we will show the table listing each edge 

in our edge set with their coloring functions 𝑔(𝑒 ) and 𝑓(𝑒 ).  We will then use the appropriate 

scenario for carrying out the sequential 𝑓-recoloring and show the resulting graph.  
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1) Example for Scenario 1:  𝛼 ∉ 𝐶  

Δ(𝐺) = 6;  𝜇(𝐺) = 2; Δ + 𝑢 − 1 = 7 

 

 

 

 

 

 

 

Note that since 𝛼 ∉ 𝐶  our sequence of edges ends with 𝑒 = [𝑥 , 𝑦 ].  Then we are 

free to apply the sequential 𝑓-recoloring beginning with (𝑒 , 𝛼 ) and a valid edge coloring of 

𝐺 is achieved. 

𝑖 Edge 𝑔(𝑒 ) 𝑓(𝑒 ) 

0 𝑒 = [𝑥 , 𝑦 ] ----- 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 

1 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 𝛼 = 𝑏𝑙𝑢𝑒 

2 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑏𝑙𝑢𝑒 𝛼 = 𝑝𝑖𝑛𝑘 

3 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑝𝑖𝑛𝑘 𝛼 = 𝑟𝑒𝑑 

e0e2

e3e1

y2

x0

y3
y0

y1

e0

y0

x0
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2) Example for Scenario 2:  𝛼 = 𝑓(𝑒 ) 

 

Δ(𝐺) = 6;   𝜇(𝐺) = 2; Δ + 𝜇 − 1 = 7 

 

 

 

 

 

 

 

 

 

 

We next identify a 〈𝑦 , 𝑧〉 chain for including the colors 𝛼 = 𝑏𝑟𝑜𝑤𝑛 and some color 

𝛽 ∉ 𝐶 .  The two options for 𝛽 are red and green.  Let’s consider both options. 

𝑖 Edge 𝑔(𝑒 ) 𝑓(𝑒 ) 

0 𝑒 = [𝑥 , 𝑦 ] ----- 𝛼 = 𝑝𝑖𝑛𝑘 

1 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑝𝑖𝑛𝑘 𝛼 = 𝑜𝑟𝑎𝑛𝑔𝑒 

2 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑜𝑟𝑎𝑛𝑔𝑒 𝛼 = 𝑏𝑙𝑢𝑒 

3 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑏𝑙𝑢𝑒 𝛼 = 𝑏𝑟𝑜𝑤𝑛 

4 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑏𝑟𝑜𝑤𝑛 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 

5 𝑒 = [𝑥 , 𝑦 ] 𝛼 = 𝑙𝑡 𝑏𝑙𝑢𝑒 𝛼 = 𝑏𝑟𝑜𝑤𝑛 

e0

x0

y0
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𝛽 = 𝑔𝑟𝑒𝑒𝑛:  In this case the 〈𝑦 , 𝑧〉 chain is of length one and is colored green.  Note that 

𝑧 ≠ 𝑥  and 𝑧 ≠ 𝑦 .  Thus, the edge [𝑦 , 𝑧] can be recolored 𝑏𝑟𝑜𝑤𝑛 and we are free to 

assign the color 𝛽 = 𝑔𝑟𝑒𝑒𝑛 to the edge 𝑒 .  The sequential 𝑓-recoloring beginning with 

(𝑒 , 𝑔𝑟𝑒𝑒𝑛) gives a proper edge-coloring of 𝐺. 

 

𝛽 = 𝑟𝑒𝑑:  In this case the 〈𝑦 , 𝑧〉 chain is of length one and is colored red.  Note that 𝑧 =

𝑦 = 𝑦 .  So we are able to assign the color 𝛼 = 𝑏𝑟𝑜𝑤𝑛 to the edge [𝑦 , 𝑧] which 

makes 𝑟𝑒𝑑 available at 𝑦  and we can sequentially 𝑓-recolor the graph beginning with 

(𝑒 , 𝑟𝑒𝑑). 
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y4y3
y2

x0

y1y0
y5

e0e3 e4

e1

e2

e5

y2
y3 y4

x0

y1
y0

y5



23 
 

 
 

3) Example for Corollary 2: 

 

The following multigraph 𝐺 has a maximal matching 𝑀 pre-colored red.  Corollary 2 

says that we can properly edge color 𝐺 with Δ + 𝜇 colors.   

Δ(𝐺) = 7;   𝜇(𝐺) = 2;   Δ + 𝜇 = 9 

 

We begin by removing 𝑀 from 𝐺 and then using the theorem to properly edge-color the 

graph 𝐺 − 𝑀 with Δ + 𝜇 − 1 = 8 colors.  Below left is one such coloring.  Then we 

simply add the pre-colored edges of 𝑀 back in and 𝐺 is colored with Δ + 𝜇 − 1 + 1 =

Δ + 𝜇 colors as desired (below right).  
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Conclusion 

 By the classical result of Vizing and Gupta (cf. [2] [3]) we know that any multigraph can be 

properly edge colored with Δ + 𝜇 colors.  In this work, Fournier and Berge have shown that if there 

is an independent set 𝑆 of vertices of maximum degree Δ and maximum multiplicity 𝜇, or if that set 

is empty, we can improve the chromatic index to an upper bound of Δ + 𝜇 − 1 colors.  Additionally, 

given the restraint of a maximal matching 𝑀 we can properly edge color the graph 𝐺 − 𝑀 with  

Δ + 𝜇 − 1 colors and the graph 𝐺 with Δ + 𝜇 colors.  Others have built upon these results.  For 

example, in 2019, A. Girao and R.J. Kang [6] extended the result of Corollary 2 with a theorem that 

says if a subset 𝑀 of the edge set of a multigraph has a minimum distance of 9 between its edges, 

and if the edges of 𝑀 are arbitrarily colored from a palette of Δ + μ colors, then there is a proper 

edge-coloring of 𝐺 using Δ + 𝜇 colors.  We can see that the pioneering work of Vizing and Gupta, 

followed by the advancement of Fournier and Berge, continues to be a subject of intense research, 

providing further theorems and techniques which lead us to ever stronger corollaries and 

applications. 
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